Selected Preprints

He, Z., Chu, B., Yang, J., Gu, J., Chen, Z., Liu, L., Morrison, T., Belloy, M. E., Qi, X., Hejazi, N., Mathur, M., Le Guen, Y., Tang, H., Hastie, T., Ionita-Laza, I., Sabatti, C. and Candès, E. Beyond guilty by association at scale: searching for causal variants on the basis of genome-wide summary statistics. Submitted.

Publications

Liu, L. and Ma, L. Spatial properties of Bayesian unsupervised trees. Proceedings of Thirty Seventh Conference on Learning Theory (COLT), PMLR 247: 3556–3581, 2024.

Feng, H., Lu, X.J., Maji, S., Liu, L., Ustianenko, D., Rudnick, N. D. and Zhang, C. Structure-based prediction and characterization of photo-crosslinking in native protein-RNA complexes. Nature Communications, 15(1): 2279, 2024.

Yang, Z., Wang, C., Liu, L., Khan, A., Lee, A., Vardarajan, B., Mayeux, R., Kiryluk, K. and Ionita-Laza, I. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Nature Genetics, 55(6): 1057–1065, 2023.

Liu, L., Li, D. and Wong, W. H. Convergence rates of a class of multivariate density estimation methods based on adaptive partitioning. Journal of Machine Learning Research, 24(50): 1–64, 2023.

Ma, S., Wang, C., Khan, A., Liu, L., Dalgleish, J., Kiryluk, K., He, Z. and Ionita-Laza, I. BIGKnock: fine-mapping gene-based associations via knockoff analysis of biobank-scale data. Genome Biology, 24(1): 24, 2023.

He, Z., Liu, L., Belloy, M. E., Le Guen, Y., Sossin, A., Liu, X., Qi, X., Ma, S., Wyss-Coray, T., Tang, H., Sabatti, C., Candès, E., Greicius, M. and Ionita-Laza, I. GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies. Nature Communications, 13(1): 7209, 2022.

Liu, L., Meng, Y., Wu, X., Ying, Z. and Zheng, T. Log-rank-type tests for equality of distributions in high-dimensional spaces. Journal of Computational and Graphical Statistics, 31(4): 1384–1396, 2022.

Yang, Y., Wang, C., Liu, L., Buxbaum, J., He, Z. and Ionita-Laza, I. KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. The American Journal of Human Genetics, 109(10): 1761–1776, 2022.

He, Z., Le Guen, Y., Liu, L., Lee, J., Ma, S., Yang, A. C., Liu, X., Rutledge, J., Losada, P. M., Song, B., Belloy, M. E., Butler, R. R., Longo, F. M., Tang, H., Mormino, E. C., Wyss-Coray, T., Greicius, M. and Ionita-Laza, I. Genome-wide analysis of common and rare variants via multiple knockoffs at biobank scale, with an application to Alzheimer disease genetics. The American Journal of Human Genetics, 108(12): 2336–2353, 2021.

Ma, S., Dalgleish, J., Lee, J., Wang, C., Liu, L., Gill, R., Buxbaum, J. D., Chung, W. K., Aschard, H., Silverman, E. K., Cho, M. H., He, Z. and Ionita-Laza, I. Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. Proceedings of the National Academy of Sciences USA, 118(47): e2105191118, 2021.

He, Z., Liu, L., Wang, C., Le Guen, Y., Lee, J., Gogarten, S., Lu, F., Montgomery, S., Tang, H., Silverman, E., Cho, M., Greicius, M. and Ionita-Laza, I. Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nature Communications, 12(1): 3152, 2021.

He, Z., Liu, L., Wang, K. and Ionita-Laza, I. A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs. Nature Communications, 9(1): 5199, 2018.

Liu, L., Li, D. and Wong, W. H. Convergence rates of a partition based Bayesian multivariate density estimation method. Advances in Neural Information Processing Systems (NIPS) 30: 4738–4746, 2017.

Ye, C., Liu, L., Wang, X. and Zhang, X. Observations on potential novel transcripts from RNA-Seq data. Frontiers of Electrical and Electronic Engineering in China, 6(2): 275–282, 2011.